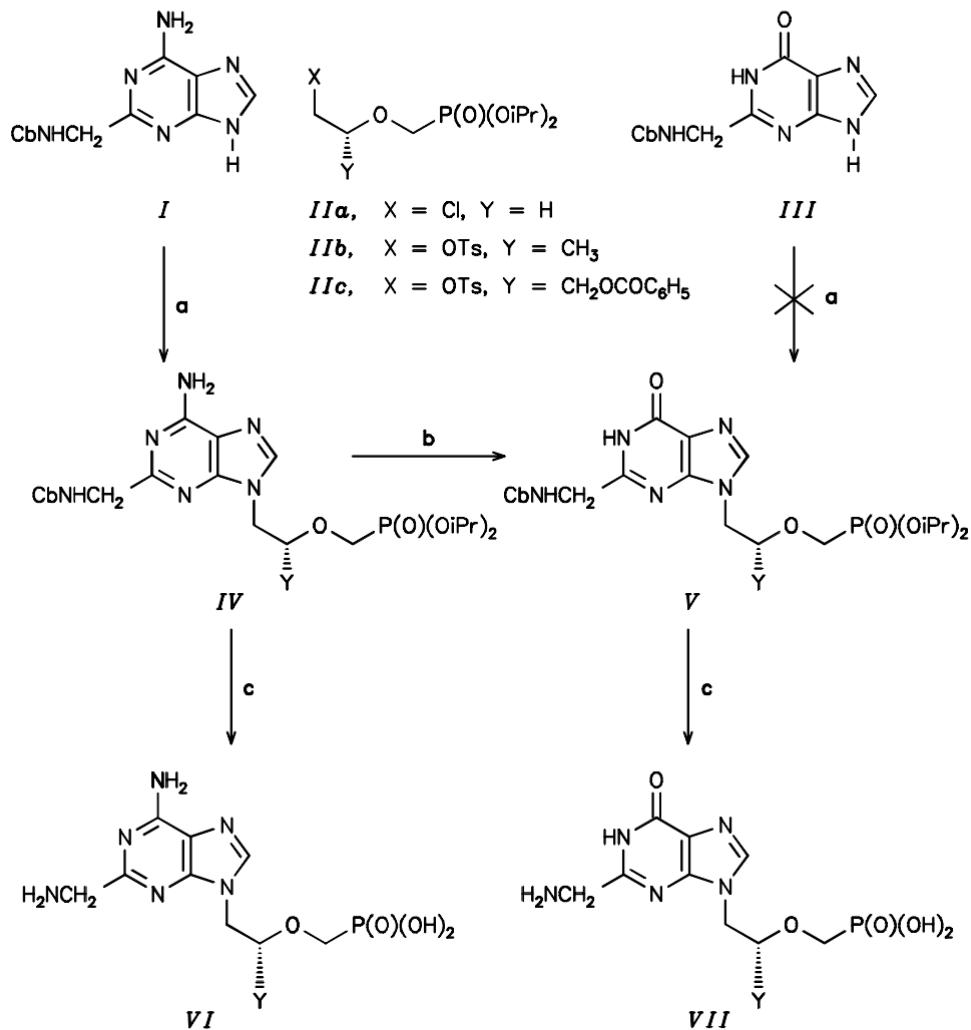


**SYNTHESIS OF ACYCLIC NUCLEOTIDE ANALOGUES DERIVED FROM
2-(AMINOMETHYL)ADENINE AND 2-(AMINOMETHYL)HYPOXANTHINE**

Michal HOCEK, Milena MASOJIDKOVA and Antonin HOLY

*Institute of Organic Chemistry and Biochemistry,**Academy of Sciences of the Czech Republic, 166 10 Prague 6, The Czech Republic*

Received March 10, 1995


Accepted April 26, 1995

Synthesis of a series of 2-(aminomethyl)-9-(2-phosphonomethoxyalkyl)adenines *VI* and hypoxanthines *VII* is reported. The protected 2-(aminomethyl)adenine *I* was selectively alkylated with [bis(2-propoxy)phosphonylmethoxy]alkyl chlorides or tosylates *II* and the obtained 9-[bis(2-propoxy)phosphonylmethoxy]alkyl-2-(benzyloxycarbonylaminomethyl)adenines *IV* were oxodeaminated to give the corresponding hypoxanthine derivatives *V*. The intermediates *IV* and *V* were completely deprotected by treatment with iodotrimethylsilane under formation of the title compounds *VI* and *VII*.

Phosphonomethoxyalkyl derivatives of pyrimidine and purine bases are potent antivirals¹. The most promising of this group are the 2-phosphonomethoxyethyl (PME), (*R*)-2-phosphonomethoxypropyl (PMP) and (*S*)-3-hydroxy-2-phosphonomethoxypropyl (HPMP) derivatives. In our recent structure-activity relationship study of base-modified analogues of these compounds we have observed that the antiviral activity is connected with the presence of amino groups at the heterocyclic moiety. Thus, adenine, guanine, 2-aminopurine, 2,6-diaminopurine derivatives² and their aza and deaza analogues³⁻⁶, as well as cytosine derivatives², exhibit potent antiviral effects while uracil, thymine, hypoxanthine, xanthine and other derivatives lacking the amino function are generally inactive².

The role of the amino group may consist just in its basicity or in the formation of hydrogen bonds with some (enzyme) counterparts. Several *N*(6)-monosubstituted and *N*(6)-disubstituted derivatives of adenine and 2,6-diaminopurine, however, possess some antiviral activity⁷ as well. Therefore, we decided to investigate the synthesis and properties of acyclic nucleotide analogues bearing 2-aminomethyl function on the purine ring.

In general, (aminomethyl)purines are known⁸⁻¹⁰ to be quite unstable due to their strongly basic benzyl-type amino group and are usually isolated as stable *N*-acyl derivatives^{9,10}. Recently we have published¹¹ a facile synthesis of *N*-protected 2-(aminomethyl)purines; now we report on alkylation of these bases leading to acyclic nucleotide analogues (see Scheme 1).

In formulae *IV* – *VII*: *a*, $Y = H$; *b*, $Y = CH_3$; *c*, $Y = CH_2OH$

a) *II*, NaH, DMF; b) iAmONO, H₂SO₄, H₂O; c) TMSI, CH₃CN

Cb = C₆H₅CH₂OCO

SCHEME 1

Benzylloxycarbonyl-protected 2-(aminomethyl)adenine *I* (Cb = benzylloxycarbonyl) was alkylated using the following synthons: bis(2-propyl) 2-chloroethoxymethane-phosphonate³ (*Ia*), (*R*)-2-[bis(2-propoxy)phosphonylmethoxy]propyl tosylate¹² (*Ib*) and (*R*)-3-benzoyloxy-2-[bis(2-propoxy)phosphonylmethoxy]propyl tosylate¹³ (*Ic*). Sodium salt of *I* was formed at room temperature by treatment with sodium hydride in dimethylformamide. After addition of the alkylating agent, the mixture was heated for 2 – 3 h at 100 °C until most of the starting material disappeared (TLC). Since slow decomposition of the product was observed after several hours of heating, the reaction was stopped before reaching complete conversion and the products were isolated by preparative TLC. After alkylation with the tosylate *Ic* the crude product was treated with methanolic ammonia prior to chromatography. The 9-substituted 2-(aminomethyl)-adenine derivatives *IV* were obtained in moderate yields and no substantial amount of other regioisomers was observed. Attempts to crystallize these products failed and the TLC-pure oily compounds were used in the further steps.

Attempted alkylation of the guanine analogue *III* by the same method was unsuccessful due to its low stability under the alkylation conditions. The 9-substituted 2-(aminomethyl)hypoxanthine derivatives *V* were, however, prepared in moderate yields by oxodeamination of *IV* using a mixture of 3-methylbutyl nitrite and dilute sulfuric acid. This procedure avoids formation of acetylated byproducts observed during usual oxodeamination with 3-methylbutyl nitrite in acetic acid and gives better yields than the use of sodium nitrite in sulfuric acid.

Treatment of the protected intermediates *IV* and *V* with iodotrimethylsilane¹⁴ cleaved simultaneously both the Cb and the 2-propyl protecting groups, while analogous reaction with bromotrimethylsilane removed the 2-propyl functions only (a microscale experiment with MS detection). Pure 2-(aminomethyl)-9-(phosphonomethoxyalkyl)-adenines *VI* and hypoxanthines *VII* were obtained after ion exchange purification. These were hygroscopic but otherwise stable in the presence of air, representing thus the first example of stable *N*-unsubstituted aminomethylpurine derivatives. The stability could be explained by formation of zwitterionic structures.

Structure of the compounds was proved by ¹H and ¹³C NMR spectra. The observed chemical shifts and interaction constants (see Experimental and Table I) are in good accord with the reported¹⁵ values of 9-substituted adenine and hypoxanthine derivatives. The downfield shifts of C-2 (δ 165) and C-6 (δ 167) carbon signals of hypoxanthine derivatives *VII* in basic medium (NaOD) can be explained¹⁶ by anion formation at N-1. This was also proved by ¹³C NMR spectrum of derivative *VIIa* in D₂O which exhibited the expected shifts at 149.87 and 158.62, respectively.

The UV spectra of 9-substituted 2-(aminomethyl)adenines *VI* and 2-(aminomethyl)-hypoxanthines *VII* displayed maxima at 260 nm or 250 nm, respectively. The presence of the strongly basic amino group manifests itself in the electrophoretic mobility of the

TABLE I
 ^{13}C NMR spectra (δ , ppm) of compounds IV – VII^a

Atom	IVa	IVb	IVc	VIIa	VIIb	VIIc	Va	Vb	Vc	VIIa	VIIb	VIIc
C-2	155.80	155.92	155.87	154.98	154.98	155.00	155.32	155.30	155.67	165.24	165.21	162.18
C-4	149.96	150.54	150.48	149.33	149.61	149.48	148.64	148.92	148.80	150.20	150.60	150.31
C-5	117.35	117.36	117.43	116.75	116.73	116.42	122.43	122.12	122.34	121.15	120.87	121.07
C-6	156.48	156.44	156.48	159.30	155.92	160.15	156.60	156.16	156.68	167.66	167.67	165.96
C-8	141.70	141.80	141.59	142.57	143.10	142.92	140.57	140.86	140.88	141.36	141.41	
NCH ₂	45.96	46.64	46.48	44.00	46.68	45.67	42.85	46.93	42.96	46.39	46.89	44.91
C-1'	42.69	43.92	43.26	42.89	42.47	43.31	42.85	42.79	42.80	42.97	46.35	43.24
C-2 ^b	74.46	75.40	80.10	70.08	75.46	79.57	70.30	75.37	80.12	70.04	75.26	79.82
C-3'	–	16.91	60.17	–	15.99	60.16	–	16.88	60.21	–	15.95	60.25
CH ₂ P ^c	64.66	62.60	63.58	68.45	66.05	67.75	64.67	62.65	63.23	68.66	66.51	67.87

^a Spectra of compounds IV and V contained additional signals of protecting groups carbon atoms: 23.8 (CH₃), 70.3 (CH), 65.6 (CH₂), 127 – 137 (four aromatic carbon signals), 157 – 160 (CO). ^b Doublet, ³J(C,P) = 10. ^c Doublet, ¹J(C,P) = 165.

compounds *VI* and *VII* at slightly alkaline pH which is substantially lower compared to that of phosphonomethoxyalkyl derivatives of adenine and guanine.

The 2-(aminomethyl)-9-(phosphonomethoxyalkyl)purines *VI* and *VII* obtained by the above-described methods were tested¹⁷ for their cytostatic (L-1210, P-388 mouse leukemia) and antiviral (selected RNA and DNA viruses and HIV-1, HIV-2) activity. None of these compounds showed any significant antiviral or cytostatic activity, nor did it exhibit any considerable cell toxicity.

EXPERIMENTAL

Unless otherwise stated, solvents were evaporated at 40 °C/2 kPa and compounds were dried at 60 °C/2 kPa over P₂O₅. Melting points were determined on a Kofler block and are uncorrected. TLC was performed on Silufol UV₂₅₄ plates (Kavalier Votice, The Czech Republic) in a CHCl₃–CH₃OH (80 : 20) mixture. Preparative TLC was carried out on 40 × 17 × 0.4 cm plates of silica gel containing UV indicator. Paper electrophoresis was performed on a paper Whatman No. 3 MM at 40 V/cm for 1 h in 0.05 M triethylammonium hydrogen carbonate, pH 7.5. The electrophoretical mobilities (*E*_{Up}) are referenced to uridine 3'-phosphate. NMR spectra were measured on a Varian Unity 500 spectrometer (500 MHz for ¹H and 125.7 MHz for ¹³C NMR) in hexadeuteriodimethyl sulfoxide referenced to the solvent signals (2.5 ppm for ¹H and 39.7 ppm for ¹³C NMR), or in deuterium oxide containing sodium deuterioxide with sodium 3-(trimethylsilyl)propane sulfonate (DSS) as internal standard for ¹H and dioxane as external standard for ¹³C NMR (δ (dioxane) 66.86). Mass spectra were measured on a ZAB-EQ (VG Analytical) instrument using FAB technique (ionization by Xe, accelerating voltage 8 kV, glycerol matrix). UV absorption spectra were measured on a Beckman DU-65 spectrometer in aqueous HCl (0.01 M) solutions. CD spectra were recorded on Jobin Yvon Mark V spectrometer in aqueous HCl (0.01 M) solutions (c 1 · 10⁻³ mol/l). Dimethylformamide was distilled from P₂O₅ and stored over molecular sieves (4A). Acetonitrile was refluxed with CaH₂ and distilled. Iodotrimethylsilane was purchased from Aldrich (U.S.A.) and 3-methylbutyl nitrite from Janssen (Belgium). The starting 2-(aminomethyl)purines¹¹ *I* and *III* as well as the alkylation synthons^{3,12,13} *II* were prepared according to previously reported methods.

Alkylation of Compound *I* – General Procedure

Method A: Sodium hydride (60% dispersion in mineral oil, 80 mg, 2 mmol) was added to a stirred solution of compound *I* (400 mg, 1.34 mmol) in DMF (20 ml) and stirring at room temperature was continued for 2 h. The alkylating agent *II* (2 mmol) was added and the mixture was stirred at 100 °C for 2 – 3 h. The solvent was evaporated, the residue was treated with water (50 ml) and extracted with ethyl acetate (3 × 50 ml). The combined organic layers were evaporated and the residue was chromatographed on a preparative layer of silica. The obtained chromatographically pure (TLC) yellowish oils were used in the further steps.

Method B: The procedure was identical with method *A* except that after evaporation of the extracts the residue was allowed to stand overnight with saturated methanolic ammonia (50 ml) and evaporated before the chromatography.

Bis(2-propyl) 2-(benzyloxycarbonylaminomethyl)-9-(2-phosphonomethoxyethyl)adenine (IVa), method *A*, yield 74%, *R*_F 0.60. FAB MS, *m/z* (rel. %): 521 (18) [M + H]. ¹H NMR spectrum ((CD₃)₂SO): 1.13 d, 6 H, *J*(CH₃,CH) = 6.1 (2 × CH₃); 1.17 d, 6 H, *J*(CH₃,CH) = 6.1 (2 × CH₃); 3.78 d, 2 H, *J*(P,CH₂) = 8.2 (PCH₂); 3.89 t, 2 H, *J*(2',1') = 4.7 (H-2'); 4.24 d, 2 H, *J*(CH₂,NH) = 5.8 (CH₂N); 4.31 t, 2 H, *J*(1',2') = 4.7 (H-1'); 4.49 m, 2 H (POCH); 5.06 s, 2 H (CH₂Ph); 7.18 bs, 1 H

and 7.58 bs, 1 H (NH_2); 7.25 – 7.40 m, 5 H (arom. H); 7.55 bt, 1 H, $J(\text{NH},\text{CH}_2) = 5.8$ (NHCb); 8.14 s, 1 H (H-8).

Bis(2-propyl) (R)-2-(benzyloxycarbonylaminomethyl)-9-(2-phosphonomethoxypropyl)adenine (IVb), method A, yield 56%, R_F 0.65. FAB MS m/z (rel.%): 535 (100) [M + H]. ^1H NMR spectrum ((CD₃)₂SO): 1.05 d, 3 H, $J(3',2') = 6.3$ (H-3'); 1.13 – 1.24 m, 12 H (4 \times CH₃-iPr); 3.77 m, 2 H (PCH₂); 3.96 m, 1 H (H-2'); 4.12 dd, 1 H, $J(1'b,2') = 6.6$, $J(\text{gem}) = 14.4$ (Hb-1'); 4.20 d, 2 H, $J(\text{CH}_2,\text{NH}) = 5.9$ (CH₂N); 4.22 dd, 1 H, $J(1'a,2') = 3.7$, $J(\text{gem}) = 14.4$ (Ha-1'); 4.51 m, 2 H (2 \times CH-iPr); 5.05 s, 2 H (CH₂Ph); 7.30 – 7.40 m, 5 H (arom. H); 7.19 bs, 2 H (NH_2); 7.42 t, 1 H, $J(\text{NH},\text{CH}_2) = 6.0$ (NHCb); 8.01 s, 1 H (H-8).

Bis(2-propyl) (S)-2-(benzyloxycarbonylaminomethyl)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine (IVc), method B, yield 42%, R_F 0.63. FAB MS, m/z (rel.%): 551 (100) [M + H]. ^1H NMR spectrum ((CD₃)₂SO): 1.155, 1.16, 1.24, 1.245 4 \times d, 4 \times 3 H, $J(\text{CH}_3,\text{CH}) = 6.1$ (CH₃-iPr); 3.42 m, 2 H (H-3'); 3.81 dd, 1 H, $J(\text{PCH}) = 9.5$, $J(\text{gem}) = 13.7$ (PC-Hb); 3.85 m, 1 H (H-2'); 3.88 dd, 1 H, $J(\text{P},\text{CH}) = 8.8$, $J(\text{gem}) = 13.7$ (PC-Ha); 4.19 dd, 1 H, $J(1'b,2') = 6.8$, $J(\text{gem}) = 14.4$ (Hb-1'); 4.20 d, 2 H, $J(\text{CH}_2,\text{NH}) = 5.9$ (CH₂N); 4.33 dd, 1 H, $J(1'a,2') = 3.6$, $J(\text{gem}) = 14.4$ (Ha-1'); 4.47 and 4.51 2 \times dsept, 2 \times 1 H, $J(\text{CH},\text{CH}_3) = 6.1$, $J(\text{P},\text{OCH}) = 7.8$ (CH-iPr); 4.98 bs, 1 H (OH); 5.05 s, 2 H (CH₂Ph); 7.20 – 7.40 m, 5 H (arom. H); 7.25 bs, 2 H (NH_2); 7.44 t, 1 H, $J(\text{NH},\text{CH}_2) = 5.9$ (NHCb); 8.02 s, 1 H (H-8).

Oxodeamination of Adenines IV to Hypoxanthines V – General Procedure

A mixture of the adenine derivative IV (1.33 mmol), water (50 ml), 98% sulfuric acid (1.5 ml) and 3-methylbutyl nitrite (3 g, 25.6 mmol) was stirred for 7 days at room temperature. The resulting yellow solution was neutralized with NaOH to pH 7 and extracted with ethyl acetate (4 \times 100 ml). The combined organic layers were evaporated and the residue was chromatographed on a preparative layer of silica. The resulting (TLC pure) yellow oils were used in the further step.

Bis(2-propyl) 2-(benzyloxycarbonylaminomethyl)-9-(2-phosphonomethoxyethyl)hypoxanthine (Va), yield 47%, R_F 0.52. FAB MS, m/z (rel.%): 522 (100) [M + H]. ^1H NMR spectrum ((CD₃)₂SO): 1.14 and 1.18 2 \times d, 2 \times 6 H, $J(\text{CH}_3,\text{CH}) = 6.1$ (CH₃-iPr); 3.77 d, 2 H, $J(\text{P},\text{CH}) = 8.5$ (PCH₂); 4.00 t, 2 H, $J(2',1') = 5.1$ (H-2'); 4.20 d, 2 H, $J(\text{CH}_2,\text{NH}) = 6.1$ (CH₂N); 4.26 t, 2 H, $J(1',2') = 5.1$ (H-1'); 4.50 dsept, 2 H, $J(\text{CH},\text{CH}_3) = 6.1$, $J(\text{P},\text{OCH}) = 7.8$ (CH-iPr); 5.06 s, 2 H (CH₂Ph); 7.10 – 7.40 m, 5 H (arom. H); 7.70 t, 1 H, $J(\text{NH},\text{CH}_2) = 6.0$ (NHCb); 7.99 s, 1 H (H-8); 12.10 bs, 1 H (NH-1).

Bis(2-propyl) (R)-2-(benzyloxycarbonylaminomethyl)-9-(2-phosphonomethoxypropyl)hypoxanthine (Vb), yield 52%, R_F 0.59. FAB MS, m/z (rel.%): 536 (100) [M + H]. ^1H NMR spectrum ((CD₃)₂SO): 1.02 d, 3 H, $J(3',2') = 6.3$ (H-3'); 1.14, 1.17, 1.18 and 1.21 4 \times d, 4 \times 3 H, $J(\text{CH}_3,\text{CH}) = 6.1$ (CH₃-iPr); 3.72 dd, 1 H, $J(\text{P},\text{CH}) = 9.5$, $J(\text{gem}) = 13.7$ (PC-Hb); 3.78 dd, 1 H, $J(\text{P},\text{CH}) = 9.3$, $J(\text{gem}) = 13.7$ (PC-Ha); 3.93 m, 1 H (H-2'); 4.10 dd, 1 H, $J(1'b,2') = 6.3$, $J(\text{gem}) = 14.4$ (Hb-1'); 4.19 d, 2 H, $J(\text{CH}_2,\text{NH}) = 5.9$ (CH₂N); 4.21 dd, 1 H, $J(1'a,2') = 3.9$, $J(\text{gem}) = 14.4$ (Ha-1'); 4.51 and 4.52 2 \times dsept, 2 \times 1 H, $J(\text{CH},\text{CH}_3) = 6.1$, $J(\text{P},\text{OCH}) = 7.1$ (CH-iPr); 5.06 s, 2 H (CH₂Ph); 7.10 – 7.40 m, 5 H (arom. H); 7.70 t, 1 H, $J(\text{NH},\text{CH}_2) = 5.9$ (NHCb); 7.96 s, 1 H (H-8); 12.15 bs, 1 H (NH-1).

Bis(2-propyl) (S)-2-(benzyloxycarbonylaminomethyl)-9-(3-hydroxy-2-phosphonomethoxypropyl)hypoxanthine (Vc), yield 46%, R_F 0.58. FAB MS, m/z (rel.%): 552 (100) [M + H]. ^1H NMR spectrum ((CD₃)₂SO): 1.16, 1.165, 1.23, 1.24 4 \times d, 4 \times 3 H, $J(\text{CH}_3,\text{CH}) = 6.1$ (CH₃-iPr); 3.45 m, 2 H (H-3'); 3.76 dd, 1 H, $J(\text{P},\text{CH}) = 9.5$, $J(\text{gem}) = 13.7$ (PC-Hb); 3.85 m, 1 H (H-2'); 3.88 dd, 1 H, $J(\text{P},\text{CH}) = 8.8$, $J(\text{gem}) = 13.7$ (PC-Ha); 4.15 dd, 1 H, $J(1'b,2') = 7.6$, $J(\text{gem}) = 14.4$ (Hb-1'); 4.21 d, 2 H, $J(\text{CH}_2,\text{NH}) = 6.0$ (CH₂N); 4.30 dd, 1 H, $J(1'a,2') = 3.5$, $J(\text{gem}) = 14.4$ (Ha-1'); 4.49 m, 2 H (CH-iPr); 5.00 bs, 1 H (OH); 5.06 s, 2 H (CH₂Ph); 7.10 – 7.40 m, 5 H (arom. H); 7.75 t, 1 H, $J(\text{NH},\text{CH}_2) = 6.0$ (NHCb); 7.98 s, 1 H (H-8); 12.10 bs, 1 H (NH-1).

Deprotection of Intermediates IV and V – General Procedure

Iodotrimethylsilane (1.07 ml, 7.5 mmol) was added under argon to a stirred solution of protected intermediates IV or V (0.75 mmol) in acetonitrile (25 ml). The mixture was stirred overnight at room temperature, the solvent was evaporated in vacuo and the residue was codistilled with acetonitrile and toluene (2 × 20 ml each) to remove excess iodotrimethylsilane. Water (50 ml) and triethylamine (1 ml) were added and the mixture was washed with ether (3 × 50 ml). The aqueous layer was applied on a Dowex D1 X2 (200 – 400 mesh, acetate form) column (50 ml). The column was washed with water and the products were eluted with a gradient of acetic acid (0.01 – 0.1 mol/l). The resulting white solid was recrystallized from water–ethanol.

2-(Aminomethyl)-9-(2-phosphonomethoxyethyl)adenine (VIa), yield 57%, colourless needles, m.p. 264 – 266 °C (dec.), E_{Up} 0.56. For $\text{C}_9\text{H}_{15}\text{N}_4\text{O}_4\text{P}$ (302.2) calculated: 35.76% C, 5.00% H, 27.81% N, 10.25% P; found: 35.57% C, 4.95% H, 27.52% N, 10.26% P. FAB MS, m/z (rel.%): 303 (80) [M + H]. ^1H NMR spectrum ($\text{D}_2\text{O} + \text{NaOD}$): 3.52 d, 2 H, $J(\text{P}, \text{CH}_2)$ = 8.8 (PCH₂); 3.96 t, 2 H, $J(2', 1')$ = 5.0 (H-2'); 4.02 s, 2 H (NCH₂); 4.41 t, 2 H, $J(1', 2')$ = 5.0 (H-1'); 8.21 s, 1 H (H-8). UV spectrum (0.01 M HCl): λ_{max} 262 nm (log ϵ 4.03).

(R)-2-(Aminomethyl)-9-(2-phosphonomethoxypropyl)adenine (VIb), yield 51%, hygroscopic colourless needles, m.p. 192 – 195 °C (dec.), E_{Up} 0.53. CD spectrum (0.01 M HCl): λ 274 nm ($\Delta\epsilon$ 0.2). For $\text{C}_{10}\text{H}_{17}\text{N}_6\text{O}_4\text{P} \cdot 2 \text{H}_2\text{O}$ (352.3) calculated: 34.09% C, 6.01% H, 23.85% N, 8.85% P; found: 33.95% C, 5.79% H, 23.68% N, 8.85% P. FAB MS, m/z (rel.%): 317 (100) [M + H]. ^1H NMR spectrum ($\text{D}_2\text{O} + \text{NaOD}$): 1.14 d, 3 H, $J(3', 2')$ = 6.3 (H-3'); 3.54 dd, 1 H, $J(\text{P}, \text{CH})$ = 9.8, $J(\text{gem})$ = 12.2 (PC-Hb); 3.62 dd, 1 H, $J(\text{P}, \text{CH})$ = 9.5, $J(\text{gem})$ = 12.2 (PC-Ha); 3.98 m, 1 H (H-2'); 4.22 s, 2 H (NCH₂); 4.22 dd, 1 H, $J(1', 2')$ = 5.6, $J(\text{gem})$ = 14.7 (Hb-1'); 4.45 dd, 1 H, $J(1', 2')$ = 3.6, $J(\text{gem})$ = 14.7 (Ha-1'); 8.19 s, 1 H (H-8). UV spectrum (0.01 M HCl): λ_{max} 260 nm (log ϵ 4.06).

(S)-2-(Aminomethyl)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine (VIc), yield 68%, white powder, m.p. 210 – 213 °C (dec.), E_{Up} 0.49. CD spectrum (0.01 M HCl): λ 273 nm ($\Delta\epsilon$ 0.26). For $\text{C}_{10}\text{H}_{17}\text{N}_6\text{O}_5\text{P} \cdot \text{H}_2\text{O}$ (350.3) calculated: 34.29% C, 5.46% H, 23.99% N, 8.84% P; found: 33.90% C, 5.31% H, 23.60% N, 8.47% P. FAB MS, m/z (rel.%): 333 (100) [M + H]. ^1H NMR spectrum ($\text{D}_2\text{O} + \text{NaOD}$): 3.48 dd, 1 H, $J(3', 2')$ = 4.6, $J(\text{gem})$ = 12.4 (Hb-3'); 3.49 dd, 1 H, $J(\text{P}, \text{CH})$ = 9.0, $J(\text{gem})$ = 12.2 (PC-Hb); 3.54 dd, 1 H, $J(\text{P}, \text{CH})$ = 8.8, $J(\text{gem})$ = 12.2 (PC-Ha); 3.76 dd, 1 H, $J(3', 2')$ = 3.7, $J(\text{gem})$ = 12.4 (Ha-3'); 3.83 s, 2 H (NCH₂); 3.86 m, 1 H (H-2'); 4.35 dd, 1 H, $J(1', 2')$ = 6.3, $J(\text{gem})$ = 14.6 (Hb-1'); 4.42 dd, 1 H, $J(1', 2')$ = 4.4, $J(\text{gem})$ = 14.6 (Ha-1'); 8.21 s, 1 H (H-8). UV spectrum (0.01 M HCl): λ_{max} 262 nm (log ϵ 4.06).

2-(Aminomethyl)-9-(2-phosphonomethoxyethyl)hypoxanthine (VIIa), yield 66%, colourless needles, m.p. >300 °C, E_{Up} 0.83. For $\text{C}_9\text{H}_{14}\text{N}_5\text{O}_5\text{P}$ (303.2) calculated: 35.65% C, 4.65% H, 23.10% N, 10.22% P; found: 35.35% C, 4.69% H, 22.96% N, 9.88% P. FAB MS, m/z (rel.%): 304 (54) [M + H]. ^1H NMR spectrum ($\text{D}_2\text{O} + \text{NaOD}$): 3.50 d, 2 H, $J(\text{P}, \text{CH}_2)$ = 8.3 (PCH₂); 3.74 s, 2 H (NCH₂); 3.96 t, 2 H, $J(2', 1')$ = 5.1 (H-2'); 4.39 t, 2 H, $J(1', 2')$ = 5.1 (H-1'); 8.07 s, 1 H (H-8). UV spectrum (0.01 M HCl): λ_{max} 250 nm (log ϵ 3.95).

(R)-2-(Aminomethyl)-9-(2-phosphonomethoxypropyl)hypoxanthine (VIIb), yield 63%, white hygroscopic powder, m.p. 204 – 207 °C (dec.), E_{Up} 0.78. CD spectrum (0.01 M HCl): λ 266 nm ($\Delta\epsilon$ 0.08), λ 248 nm ($\Delta\epsilon$ -0.14), λ 223 nm ($\Delta\epsilon$ 0.13). For $\text{C}_{10}\text{H}_{16}\text{N}_5\text{O}_5\text{P} \cdot 3 \text{H}_2\text{O}$ (371.3) calculated: 32.35% C, 5.97% H, 18.86% N, 8.34% P; found: 32.52% C, 5.80% H, 18.92% N, 8.16% P. FAB MS, m/z (rel.%): 318 (100) [M + H]. ^1H NMR spectrum ($\text{D}_2\text{O} + \text{NaOD}$): 1.12 d, 3 H, $J(3', 2')$ = 6.3 (H-3'); 3.46 dd, 1 H, $J(\text{P}, \text{CH})$ = 9.0, $J(\text{gem})$ = 12.4 (PC-Hb); 3.55 dd, 1 H, $J(\text{P}, \text{CH})$ = 8.3, $J(\text{gem})$ = 12.4 (PC-Ha); 3.74 s, 2 H (NCH₂); 4.01 m, 1 H (H-2'); 4.26 dd, 1 H, $J(1', 2')$ = 5.6, $J(\text{gem})$ = 14.4 (Hb-1'); 4.35 dd, 1 H, $J(1', 2')$ = 4.4, $J(\text{gem})$ = 14.4 (Ha-1'); 8.10 s, 1 H (H-8). UV spectrum (0.01 M HCl): λ_{max} 250 nm (log ϵ 4.00).

(*S*)-2-(Aminomethyl)-9-(3-hydroxy-2-phosphonomethoxypropyl)hypoxanthine (VIIc), yield 66%, colourless needles, m.p. 224–226 °C, E_{Up} 0.80. CD spectrum (0.01 M HCl): λ 269 nm ($\Delta\epsilon$ 0.14), λ 248 nm ($\Delta\epsilon$ -0.23), λ 223 ($\Delta\epsilon$ 0.27). For $\text{C}_{10}\text{H}_{16}\text{N}_5\text{O}_6\text{P}$. 2.5 H_2O (378.3) calculated: 31.74% C, 5.59% H, 18.51% N, 8.19% P; found: 31.61% C, 5.18% H, 18.43% N, 8.78% P. FAB MS, m/z (rel. %): 334 (60) [M + H]. ^1H NMR spectrum (D_2O + NaOD): 3.47 dd, 1 H, $J(3'\text{b},2') = 4.4$, $J(\text{gem}) = 12.4$ (Hb-3'); 3.49 dd, 1 H, $J(\text{P},\text{CH}) = 9.5$, $J(\text{gem}) = 12.2$ (PC-Hb); 3.57 dd, 1 H, $J(\text{P},\text{CH}) = 8.8$, $J(\text{gem}) = 12.2$ (PC-Ha); 3.75 dd, 1 H, $J(3'\text{a},2') = 3.4$, $J(\text{gem}) = 12.4$ (Ha-3'); 3.86 s, 2 H (NCH₂); 3.88 m, 1 H (H-2'); 4.34 dd, 1 H, $J(1'\text{b},2') = 6.1$, $J(\text{gem}) = 14.6$ (Hb-1'); 4.41 dd, 1 H, $J(1'\text{a},2') = 4.9$, $J(\text{gem}) = 14.6$ (Ha-1'); 8.08 s, 1 H (H-8). UV spectrum (0.01 M HCl): λ_{max} 250 nm (log ϵ 3.94).

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (Grants No. 455402 and No. 455407), by the State Grant Agency of the Czech Republic (Grant No. 203/93/0118) and by Gilead Sciences (Foster City, CA, U.S.A.). The antiviral activities were studied by Professor E. De Clercq, Dr J. Balzarini and Dr R. Snoeck, Rega Institute, Catholic University, Leuven, Belgium, the cytostatic activity by Dr I. Votruba of this Institute. The authors' thanks are due to Dr H. Votavova for measurement of CD spectra.

REFERENCES

1. Holy A., Dvorakova H., Jindrich J. in: *Antiviral Acyclic Nucleotide Analogues in Antibiotics and Antiviral Compounds* (K. Krohn, H. A. Kirst and H. Maag, Eds), p. 455. VCH, Weinheim 1993.
2. Holy A., Votruba I., Merta A., Cerny J., Vesely J., Vlach J., Sediva K., Rosenberg I., Otmar M., Hrebabecky H., Travnicek M., Vonka V., Snoeck R., De Clercq E.: *Antiviral Res.* **13**, 295 (1990).
3. Dvorakova H., Holy A.: *Collect. Czech. Chem. Commun.* **58**, 1419 (1993).
4. Dvorakova H., Holy A., Alexander P.: *Collect. Czech. Chem. Commun.* **58**, 1403 (1993).
5. Dvorakova H., Holy A., Masojidkova M., Votruba I., Balzarini J., Snoeck R., De Clercq E.: *Collect. Czech. Chem. Commun.* **58** (Special Issue), 253 (1993).
6. a) Hockova D., Holy A., Dvorakova H.: *Collect. Czech. Chem. Commun.* **58** (Special Issue), 250 (1993). b) Hockova D., Masojidkova M., Budesinsky M., Holy A.: *Collect. Czech. Chem. Commun.* **60**, 224 (1995).
7. Holy A., Snoeck R., Andrei G., Balzarini J., De Clercq E.: *Antiviral Res.* **26**, A 231 (1995).
8. Giner-Sorolla A., Bendich A.: *J. Am. Chem. Soc.* **80**, 3932 (1958).
9. Herdewijn P., Van Aerschot A., Pfeleiderer W.: *Synthesis* **1989**, 961.
10. Matsuda A., Satoh K., Miyasaka T., Ueda T.: *Chem. Pharm. Bull.* **32**, 2048 (1984).
11. Hocek M., Masojidkova M., Holy A.: *Synthesis* **1994**, 1401.
12. a) Holy A., Dvorakova H., De Clercq E., Balzarini J.: *PCT Int. Appl. WO 94 03,467* (1994); *Chem. Abstr.* **122**, 106401 (1995). b) Holy A., Dvorakova H., Masojidkova M.: *Collect. Czech. Chem. Commun.*, in press.
13. Holy A., Dvorakova H.: *Nucleosides Nucleotides*, in press.
14. Lott R. S., Chauhan V. S., Stammer C. H.: *J. Chem. Soc., Chem. Commun.* **1979**, 495.
15. Chenon M. T., Pugmire R. J., Grant D. M., Panzica R. P., Townsend L. B.: *J. Am. Chem. Soc.* **97**, 4627 (1975).
16. Seela F., Lampe S.: *Helv. Chim. Acta* **76**, 2388 (1993).
17. Holy A., Hocek M., Snoeck R., Balzarini J., De Clercq E.: *Antiviral Res.* **26**, A 305 (1995).